
How the Word Adjacency Network
(WAN) works
..

Correspondence:

Gabriel Egan, School of

Humanities, De Montfort

University, UK.

E-mail:

mail@gabrielegan.com

Paul Brown

School of Humanities, De Montfort University, UK

Mark Eisen

Intel Labs, Philadelphia, USA

Santiago Segarra

Computer Science and Electrical & Computer Engineering, Rice

University, USA

Alejandro Ribeiro

Department of Electrical and Systems Engineering, University of

Pennsylvania, USA

Gabriel Egan

School of Humanities, De Montfort University, UK
..

Abstract
The Word Adjacency Network (WAN) method is a newly invented method for

attributing the authorship of texts based on internal evidence about the proximities

of high-frequency words in those texts. The method has been the subject of math-

ematically rigorous explanations in scientific journals and here is offered instead a

relatively non-technical account for humanist readers unfamiliar with advanced

mathematical nomenclature. The description will refer to the operation of the

algorithm as it is implemented in a newly completed open-source, open-access

version that the authors have made available for free unlimited download on the

WorldWide Web.
...

This essay will describe the algorithm underlying a

new method of computational authorship attribution,

the Word Adjacency Network (WAN) method, and

introduce an Open Source implementation of this

algorithm as a Python script freely available for any

investigator to experiment with. A mathematically

rigorous description of the WAN method and

accounts of its application to various problems in

authorship attribution has been provided in a

series of previous publications (Segarra et al., 2015;

Segarra et al., 2016; Eisen et al., 2018), and the specific

purpose here is to offer a relatively non-technical

account of the underlying algorithm to help dispel

misconceptions about it and encourage its use by

other investigators.

At the heart of the WAN method is a consideration

of language in terms of word frequencies. In English,

‘the’ is the most frequently used word at about one in

sixteen of all words, and the word ‘and’ comes second

at about one in thirty words, and ‘to’ comes third at

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022. VC The Author(s) 2021. Published by Oxford University Press on
behalf of EADH. All rights reserved. For permissions, please email: journals.permissions@oup.com
doi:10.1093/llc/fqab002 Advance Access published on 8 October 2021

321

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

about one in forty-two words. (If we subsume under

one heading all the various ways of conjugating ‘to

be’—as ‘was’, ‘am’, ‘are’, ‘is’, and so on—then it would

take second place in this rank order.) These three

words will be used to begin our illustration of the

WAN method and then we will switch to the four

words ‘and’, ‘in’, ‘one’, and ‘with’ that conveniently

cluster within an excerpt from a Shakespeare play,

enabling us to develop our illustration to consider

some of the associated complexities.

The most-frequent words in modern English are

the so-called function words that serve grammatical

and structural purposes that in other languages (and

in older forms of English) are more often served by

inflection. The 100 most-common words in English,

most of them function words, comprise around half of

all that is spoken and written. Although all English

writers rely heavily on this small set of most-

common words, writers vary one from another in

how often they use each one. The preferences for

favouring certain words and avoiding others enable

us to tell one person’s writing from another’s solely

from this internal evidence. That is, because the par-

ticular preferences are different for each writer, we can

use them for authorship attribution in cases where

other evidence is not available or is contested.

The foundational work in this field, based on man-

ual counting of words, was Frederick Mosteller and

David L. Wallace’s demonstration that the securely

attributed writings of the American Founding

Fathers James Madison and Alexander Hamilton

show distinguishable and consistent preferences for

using or avoiding thirty function words and that these

preferences may be analysed to attribute anonymous

works of which either man might be the author

(Mosteller and Wallace, 1963). Subsequent studies

enabled by automated counting have repeatedly

shown that function-word frequencies can reliably

distinguish authorship, and the success rate of this

approach can be precisely calculated by applying it

to works for which the authorship is already securely

established from external evidence and seeing how

many correct attributions the approach is capable of

‘predicting’.

Here and throughout this essay, we will put ‘pre-

diction’ and its cognate words in ‘scare’ quotation

marks to signal special usage, as we do not mean

them in the everyday sense of forecasting a future

event but rather in the scientific sense of reaching a

conclusion, derived from a process of calculation, that

can be checked against reality in order to judge the

validity of the process leading to that conclusion.

Scientific models are frequently judged on their accur-

acy in such ‘predictions’. Successful ‘predictions’ in

over 90% of cases are now common in authorship

attribution using function words. David L. Hoover’s

systematic evaluation showed that John Burrows’s

‘Delta’ method of authorship attribution using func-

tion words and other high-frequency words is excep-

tionally accurate and relatively indifferent to changes

in language use over time and differences in genre, and

Shlomo Engelson Argamon’s analysis confirmed the

utility of function words in authorship attribution

(Hoover, 2004; Argamon, 2018). Function-word fre-

quency has been used to identify authorship in texts as

varied as the Latin ‘Consolatio’ attributed to Marcus

Tullius Cicero (Forsyth et al., 1999), the ‘Book of

Mormon’ (Jockers et al., 2008), and the anonymized

judgements of the US Supreme Court (Jockers et al.,

2019). The reader may multiply these examples many

times by browsing the back issues of this and similar

journals.

Aside from their mere frequencies of use, do func-

tion word occurrences contain useful evidence that

has hitherto been neglected? One obvious place to

look is in the ways that function words follow one

another across a text. Alexis Antonia, Hugh Craig,

and Jack Elliott used this approach by analysing

what they called skip N-grams, meaning they would

‘find the first instance of one of the listed words, then

move to the next of them, ignoring any intervening

unlisted word’ (Antonia et al., 2014, p. 151). This ap-

proach captures the attribute of successiveness—that

one particular word is likely to be followed by another

word—but in skipping over the intervening words, it

ignores the ways in which certain words cluster to-

gether or are spaced out across a text. Can we capture

numerically the authorial preferences for putting cer-

tain words near other words and for keeping other

pairings apart? As half of all writing consists of repe-

titions of the 100 or so most-common words, record-

ing the distance, measured in intervening words, from

P. Brown et al.

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022322

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

each function word to every other function word is

technically possible but generates large amounts of

data. There are, depending on the edition used,

around 36,000-word tokens in Hamlet, of which

around 18,000 tokens will belong to these 100 most-

common types. (We use ‘tokens’ here in the sense of

total occurrences including repetitions, so that

Hamlet’s speech ‘Words, words, words’ is three

‘tokens’ but only one word ‘type’.) Recording the dis-

tances between each pair of 18,000 tokens would gen-

erate around 320 million data points, and for whole

authorial canons there would be billions of data

points.

If we care only about the general tendencies regard-

ing the proximities of word types, we need not count

the billions of distances between every pair of tokens.

We want to know how often the word ‘the’ tends to

appear near the word ‘and’, irrespective of the loca-

tions of each instance. The significance of the distance

falls off sharply as the distance rises, as we would be

highly interested in occasions when ‘the’ falls within a

few tokens of ‘and’ but scarcely interested at all when

these words are 50 or 100 tokens apart. Whether their

proximities are consciously or unconsciously con-

trolled by writers, no one supposes that such distant

pairings are shaped by the creative mind. Loosely, the

close proximities that we are interested in can be con-

sidered as collocations in the sense that the two words

appear together but not necessarily next to each other,

as they are in bigrams. But our proximities are not

collocations in the stricter sense familiar to corpus

linguists, which requires that the words appear to-

gether more frequently than we would expect by

chance. As in the related notion of keyness, the meas-

urement of probability in the corpus linguistics notion

of collocation serves to isolate exceptional usages,

whereas the WAN method is concerned with unex-

ceptional word usages that are nonetheless measurable

and demonstrably distinctive of authorship.

For our purposes, there exists a window of interest

around each function word and we want to know how

often two function words fall within the same win-

dow. Because of the way computers are constructed, it

is natural for software to process a text by moving

through it one word at a time from beginning to

end. Considering just our top-three most-frequent

words in English (‘the’, ‘and’, and ‘to’), we may simply

project our window forward from the location of each

word that we consider in turn, like this:

where the body is and [go with us to the] king

(Hamlet 4.2.24–25).

We show the words without punctuation and reduced

to lower case because, for our purposes, these features

are irrelevant. In this example, ‘and’ is the function

word we have alighted upon and the square brackets

represent a five-token window projected forward

from it. This forward-projection captures the fact of

one word appearing near another without privileging

the order of appearance since, as will be seen when we

show how the data are stored, the method by which we

record that in this example ‘to’ follows ‘and’ allows the

same phenomenon to be read as ‘and’ preceding ‘to’.

Moreover, this forward-projection prevents us from

double-counting, since when we find an occurrence of

‘and’ followed four tokens later by an occurrence of

‘to’ we want to record this as one occurrence of these

two words in close proximity and not count it a se-

cond time by subsequently alighting on ‘to’ and

recording that ‘and’ appears four tokens earlier. For

now, let us assume that our window is five tokens

wide, although the software implementation of the

method will allow us to vary this number at will.

A further sophistication is to distinguish how far

along our five-word window the proximate function

words appear. In the example above, the words in the

window’s leftmost three positions (Positions 1, 2, and

3) are ‘go’, ‘with’, and ‘us’, none of which is one of the

three function words we are interested in, but in

Position 4 we find ‘to’ and in Position 5 we find

‘the’. The first of these, ‘to’, is nearer to ‘and’ than

the second, ‘the’, and these relative proximities should

be differently scored in our method. We can achieve

this by weighting the window positions so that a

match in Position 1 counts more than a match in

Position 2, which counts more than a match in

Position 3, and so on. For reasons that we will explain

shortly, the WAN method uses the descending scale of

weights 1.0, 0.75, 0.56, 0.42, and 0.32 for Positions 1

through 5.

Since we are interested in the authorial tendency to

place each of our function words near to each of the

How the WAN algorithm works

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022 323

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

others, the obvious data structure to hold this infor-

mation is a table of rows and columns, called a matrix

in mathematics and computer science. In our matrix,

the rows and columns are labelled with the function

words and each row reports upon the frequency with

which we found each of the function words in the five-

word windows projected forward from the function

word given in the heading for that row, as shown in

Table 1.

In Table 1, the scores have been normalized so

that each row adds up to the number 1. Thus, the

first row, for the word ‘the’, can be vocalized as

‘After “the”, the preferences for following it with

each of the three words of interest are 18% for

“the”, 54% for “and”, and 28% for “to”’. This

does not mean that more than half the times that

‘the’ was used in the text the word ‘and’ was found

within five tokens after it, as we omit occasions

when none of the three words appeared shortly

after ‘the’. Rather, the numbers are relative prefer-

ences: they tell us how much one of the words is

preferred over the other two on those occasions

when any of them fell within our five-word win-

dow. Moreover, the numbers are weighted scores in

which occurrence in the window’s Position 1

counted more than occurrence in Position 2,

which counted more than occurrence in Position

3, and so on.

Table 1 is a way of representing what is called a

Markov chain, which we can also visualize using what

is called a state-transition diagram, as in Fig. 1. In the

state-transition diagram version, the three words of

interest are represented by ovals (known as nodes)

and the authorial habit of following a word with one

of the others is represented as an arrow-headed line

(known as an edge) from the first word to the second,

which is annotated with the score (known as the

weight) representing how often this second word fol-

lows the first. Table 1 and Fig. 1 contain the same

information represented in different ways, but for ma-

nipulation inside a computer the form given in

Table 1 is more convenient because computer mem-

ory cells are easily arranged in such a tabular form.

We have been referring to the words whose occur-

rences in a text we want to count as function words,

but more neutrally, we may call them words of inter-

est, as the algorithm that counts them merely com-

pares strings of characters and takes no account of

their grammatical significance. The algorithm for cre-

ating our matrix of the kind shown in Table 1 may

now be stated as follows:

(1) create a square matrix in which each row rep-

resents one of the words of interest and each

column represents one of the words of interest

and fill it with zeroes;

(2) move through the text one word at a time, com-

paring each word with the list of words of

interest;

(3) in the event of a match in this comparison,

open a window after the word of interest that

takes in the next five words of the text;

(4) move through the five-word window one word

at a time, comparing each word with the list of

words of interest;

(5) in the event of a match in the window, raise the

value of the corresponding cell in the matrix at

Table 1. A matrix representing the proximities of the func-

tion words ‘the’, ‘and’, and ‘to’

#from to! the and to

the 0.18 0.54 0.28

and 0.51 0.36 0.13

to 0.29 0.55 0.16

Fig. 1 A state-transition diagram representing the Markov

chain shown in Table 1.

P. Brown et al.

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022324

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

the row representing the word found in the text

and at the column representing the word found

in the five-token window. The amount to raise

the cell by is 1 for Position 1 in the window, 0.75

for Position 2, 0.56 for Position 3, 0.42 for

Position 4, or 0.32 for Position 5; and

(6) when the entire text has been processed, nor-

malize the matrix by dividing each cell’s value

by the sum of the values in that cell’s row, unless

that row’s sum is zero (in which case do

nothing).

The resulting matrix is the Word Adjacency

Network that gives the WAN method its name.

A particular modification to this algorithm might

be advantageous. For instance, when studying plays we

might want to consider each character’s speeches sep-

arately and so discount a word near the end of one

speech matching with a word near the beginning of the

next, as would be the case with our example ‘. . . go

with us to the king. j HAMLET the body is with the

king’ that begins in one speech and ends in another. To

discount such matches we would modify Step 3 above

to ‘. . . open a window taking in the next five words of

the text, or as many as are left in the current speech’. In

applying the WAN method to texts other than plays,

such as novels, the same kind of modification would

allow us to treat sentences or paragraphs as the units of

construction and disallow matches across a sentence

or paragraph boundary. This option is available in the

Open Source Python script that accompanies this

essay. For technical completeness in the case of our

algorithm, we should also add to Step 3 a rule about

shortening the window commensurately as we come

within the last five words of the text.

Each row in a WAN is what is known in mathem-

atics as a probability distribution, since by embodying

the actual preferences shown by a text for following a

word of interest by each of the other words of interest

a row can be treated as a ‘prediction’ of what another

text by the same author will do regarding the same

proximities. These ‘predictions’ will be reliable, of

course, only if the preferences we are concerned

with are stable authorial traits. If each author varies

substantially in these habits from work to work, or

across time, or when writing in different genres,

then the ‘predictions’ will be inaccurate. That the traits

are stable is not something we should assume about

authorship. Rather we may test this empirically by

creating WANs for different authors’ works, and sam-

pling across time and across genres the accuracies of

the ‘predictions’ they enable us to make.

We need then to be able to compare one WAN with

another and measure their difference. The accepted

mathematical means for comparing two

probability distributions is the measurement called

Kullback–Leibler divergence (Kullback and Leibler,

1951). Since a WAN is a series of probability distribu-

tions—one for each word of interest, each row—we

can measure the Kullback–Leibler divergence between

each row in one WAN and the corresponding row in

another and sum the divergences for the entire series

of rows. (As will be explained shortly, we weight each

Kullback–Leibler divergence by what is called the

Limit Probability of the word for which the row is

the probability distribution.) The resulting sum is

known as the relative entropy between the two

WANs. The notion of entropy as a feature of language

was invented by the founder of Information Theory,

Claude Shannon, and its full explanation is beyond the

scope of this essay; an explanation appears in Hugh

Craig and Brett Greatley-Hirsch’s Style, Computers,

and Early Modern Drama (Craig and Greatley-

Hirsch, 2017, pp. 48–49). The first consideration is

that two WANs can meaningfully be compared only

if they represent the proximities for the same set of

words of interest as they are found in the two texts.

That is, the labels for the rows and columns as shown

in Table 1 must be the same for the two WANs: we

have to be predicting the proximities of the same

words of interest.

The notion of relative entropy draws on the idea

that, as a series of probability distributions, a WAN

‘predicts’ how often we should expect to find in an-

other text—one not used to make the WAN—the au-

thorial habit of certain words following other words in

close proximity. Given two WANs representing the

habits found in two texts, the relative entropy between

them is an expression of how accurate would be the

‘predictions’ about habits of word placement made

from one when used to anticipate the actual habits

found in the other. Since it concerns ‘predictions’

about one text based on the WAN for the other, this

relative entropy calculation will necessarily come out

differently when calculated in the opposite direction,

using the second WAN to make ‘predictions’ about

How the WAN algorithm works

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022 325

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

the first text. Which direction to use in a particular

application is a matter for the investigator(s) to

decide.

In our published applications of the WAN

algorithm to problems of authorship attribution,

we consistently generated a WAN for a suspect

text—typically, a play whose authorship we wanted

to attribute—and a WAN for an entire set of sole-

authored well-attributed plays by a candidate author.

We then calculated the relative entropy, represented

by the letter H, that expresses how far the WAN for the

suspect text diverges from the expectations repre-

sented by the WAN for the candidate author’s profile,

which calculation we may represent symbolically as

H(text, profile). The smaller the value of H, the more

that the text is like the profile in its placement of the

words of interest in proximity to one another. If there

exists a set of candidates for the authorship of text, it is

reasonable to generate a profile for each, based on his

combined body of sole-authored well-attributed

works, and calculate H(text, profile) for each candi-

date’s profile. The candidate for whose profile the

resulting H has the lowest value is the likeliest of those

candidates to be the author of the text.

Before proceeding to the calculation for relative

entropy, we should explain the sequence of weight-

ings—1.0, 0.75, 0.56, 0.42, and 0.32—used for the five

positions in the window opened up after each word of

interest that is found in the text. These are approxi-

mate values for a single constant, 0.75, raised in turn

to the power of 0, 1, 2, 3, and 4. That is, 1.0 is 0.75 to

the power of 0, 0.75 is 0.75 to the power of 1, 0.56 is

0.75 squared, 0.42 is 0.75 cubed, and 0.32 is 0.75 to the

power of 4. (For ease of explanation, these decimal

fractions are shown here only to their first two decimal

places; the actual calculation uses the default precision

of the computer language employed, typically at least

fifteen decimal places.) This series of numbers is a

descending power scale and it reflects our decreasing

interest in matches as the matched word moves fur-

ther to the right in our window and hence further

away from the word in our text that caused us to

open the window. The starting value 0.75, the ‘decay

parameter’, was derived experimentally as the one

yielding the greatest accuracy in application of the al-

gorithm to questions of authorship attribution and it

may easily be varied (Segarra et al., 2015, p. 5469).

A final complexity to be considered before turning

to the calculation of the relative entropy between two

WANs is the notion of Limit Probabilities. It is a sub-

stantial complication and we will take several pages to

explain it. We started by noting that ‘the’ is the most

common word in English, and that ‘and’ and ‘to’ are

the second and third most common in this rank order.

If we apply our method to the 100 most common

words in English the words at the bottom end of

this rank order will be used much less often—about

100th as often according to the principle known as

Zipf’s law—than the words at the top of the rank

order. Although the phenomenon is most easily dem-

onstrated with function words, any set of words of

interest will likely appear at differing frequencies in

any two texts. We want the words used more often

to matter more in our calculations than the words

used less often, but rather than just adopting the

rank order and frequencies in which our words appear

in English we want to adopt their rank order and

frequencies in the actual texts under consideration.

That is, we want our weighting of how much import-

ance we attach to ‘the’, ‘and’, and ‘to’ in Fig. 1 to arise

from the actual uses of ‘the’, ‘and’, and ‘to’ in the text

under examination and hence in the Markov chain

representing it. The calculation of Kullback–Leibler

divergence requires us to calculate this weighted im-

portance, which is called the Limit Probability, for

each word of interest.

To picture how we achieve this, imagine a person

taking a series of hops from each node, each word, in

Fig. 1 to one of the other nodes/words, and making the

decision of which node/word to hop to next using the

probabilities given by the edges in the picture. That is,

of all the times the hopper lands on ‘the’ she next hops

to ‘and’ 54% of the time, she next hops to ‘to’ 28% of

the time, and she hops off ‘the’ only to land back on

‘the’ 18% of the time. She records how long she spends

on each node/word as a proportion of all the hops

made. After a great many hops, these three propor-

tions will converge on three numbers, one for each

node/word, and will not substantially change as she

makes further hops. These three numbers are the

Limit Probabilities for ‘the’, ‘and’, and ‘to’ and are

used in the relative entropy calculation.

The calculation of Limit Probabilities is best

visualized using the representation in Fig. 1, but is

P. Brown et al.

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022326

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

computationally more easily achieved using the ma-

trix in Table 1. In this form, the equivalent to taking

each hop is multiplying the matrix by itself and the

simulation of many hops is achieved by repeating this

multiplication many times. Another way to express

this is to say that we raise the matrix to a certain

power. When multiplying any two matrices, each

cell in the resulting matrix contains the sum of the

products of the cells in the same row in the first matrix

multiplied by the cells in the same column in the se-

cond matrix. Table 2 visualizes this process.

In Table 2, the nine cells in the three-by-three ma-

trix that is to be multiplied by itself are labelled a

through i and the multiplications and additions

required to produce the resulting matrix are shown

in terms of these labels, with the resulting cells labelled

a’ (vocalized as ‘a prime’) through i’ (vocalized as ‘i

prime’). For example, the cell h’ is in the bottom row

and the middle column of the resulting matrix, and as

can be seen the numbers to be multiplied and summed

to produce h’ are drawn from the bottom row of the

first matrix (cells g, h, and i) and the middle column of

the second matrix (cells b, e, and h). This method of

combining rows and columns is replicated through-

out the multiplication.

When the matrix multiplication is repeated many

times—when we raise the matrix to a large power—

the values converge so that every row in the resulting

matrix contains the same set of values. By ‘converge’,

we mean that when the matrix is again multiplied by

itself the numbers in it do not appreciably change.

Using the labelling in Table 2, this means that in the

resulting matrix the same number appears in each of

cells a’, d’, and g’, and another number is the same in

cells b’, e’, and h’, and another number is the same

in cells c’, f’, and i’. For our example expressed in

Table 1, the number in cells a’, d’, and g’ is the

Limit Probability for the word ‘the’, the number in

cells b’, e’, and h’ is the Limit Probability for the word

‘and’, and the number in cells c’, f’, and i’ is the Limit

Probability for the word ‘to’.

Let us take a second concrete example using a small

play extract we have explored previously (Segarra

et al., 2016, pp. 235–36). This is how lines

1.2.11� 13 of Hamlet look once we have removed

capitalization, lineation, and punctuation so that

they are a simple string of tokens:

with one auspicious and one dropping eye with

mirth in funeral and with dirge in marriage in

equal scale weighing delight and dole

We have here italicized for clarity all the occurrences

of the four function words ‘and’, ‘in’, ‘one’, and ‘with’,

which in this extract repeatedly occur within five

words of each other. This is of course why we chose

those function words for this illustration: even in this

tiny textual sample they occur sufficiently often to

make a usefully illuminating WAN.

After running the above six steps of our

algorithm for this small extract from Hamlet and

these four function words (our words of

interest), we arrive at the normalized WAN shown

in Table 3.

As before, each row sums to 1 because it represents

for each word of interest—‘and’ in the case of the first

row, ‘in’ in the second row, ‘one’ in the third row, and

‘with’ in the fourth row—the frequencies at which

that word is followed within five words by each of

the words of interest (including itself), if it is followed

by any of them. That last qualification is necessary

because, as we noted earlier, the matrix represents

the weighted-by-proximity answer to the question ‘if

Table 3. A matrix representing the normalized WAN for the

proximities of ‘and’, ‘in’, ‘one’, and ‘with’ in Hamlet lines

1.2.11–13

#from to! and in one with

and 0.00 0.27 0.30 0.43

in 0.40 0.40 0.00 0.20

one 0.34 0.14 0.26 0.26

with 0.21 0.41 0.31 0.07

Table 2. Multiplication of a three-row, three-column matrix by itself

a b c a b c a’ ¼ a� aþ b� dþ c� g b’ ¼ a� bþ b� eþ c�h c’¼ a� cþ b� fþ c� i

d e f � d e f ¼ d’ ¼ d� aþ e� dþ f� g e’ ¼ d� bþ e� eþ f� h f’ ¼ d� cþ e� fþ f� i

g h i g h i g’ ¼ g� aþ h�dþ i� g h’ ¼ g� bþ h� eþ i� h i’ ¼ g� cþ h� fþ i� i

How the WAN algorithm works

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022 327

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

it is followed by any of the four, how often is it fol-

lowed by “and”, how often by “in”, and so on?’; we are

not recording cases where it is followed by none of

them.

To produce our Limit Probabilities, we multiply

the matrix in Table 3 by itself 100 times to produce

the matrix shown in Table 4, where we have removed

the labels ‘from’ and ‘to’ because the matrix no longer

represents the ‘from’/‘to’ relationships and instead

contains the Limit Probabilities for each of the four

words, indicating how often our hypothetical node-

hopper would spend on each node in our Markov

chain on account of that node having the number

and strengths of incoming edges it has. These Limit

Probabilities are used in our calculation of the relative

entropy between two WANs because they reflect the

different significances each word has in our WAN.

We see in Table 4 that in every column the number

in each cell is the same as the number in the other cells

in that column and that the rows still sum to 1. If we

had examined the results of the matrix multiplication

after each of its 100 iterations, we would have seen

these numbers gradually converge across the itera-

tions, and indeed they reached convergence to two

decimal places long before the 100 multiplications

were complete. In this case, 100 iterations were

enough for the numbers to converge down as far as

the fifteenth decimal place although for clarity we here

represent only the first two decimal places. The sig-

nificance of the convergence of these numbers is that

they indicate that no matter which node our node-

hopper starts on—whether it is ‘and’, ‘in’, ‘one’, or

‘with’ in the leftmost column—she will still, after a

large number of hops, have spent the same proportion

of time on each node as she would if she had started

elsewhere. The time spent on the different nodes

depends on the weights of the edges between them,

not on which one she happens to start on.

Do all WANs necessarily have this quality that after

a large number of hops the proportions of time spent

on the different nodes will converge on a stable series

of numbers that cease changing as we continue hop-

ping? Might not a WAN have features that upset this

process? In fact, at least two problems can emerge in

principle and need to be prepared for even though

they are rarely found in real-world language samples.

Suppose that in Table 3, the row for the word ‘and’

was full of zeroes, representing a text in which ‘and’

was never followed within five words by ‘and’, or ‘in’,

or ‘one’, or ‘with’. This would be equivalent to a

Markov chain in which the node ‘and’ has no out-

going edges but still has incoming edges as other

words are still followed by ‘and’. For our node-

hopper, the node ‘and’ would represent a trap: once

she had landed there, she could never escape as no

more hops to other nodes would be possible.

Over the long term, any Markov chain containing

such a trap will eventually capture the node-hopper

and keep her there for the rest of eternity so that the

proportion of time spent on the trapping node will

creep ever closer to 100%. This trap is known as an

‘absorbing state’ and it makes impossible the useful

interpretation of our Markov chain. The solution to

this problem is to say that the run of zeroes in the row

for ‘and’ represents our text’s equal indifference to

which word follows ‘and’. The text is just as likely to

follow ‘and’ with ‘and’ as it is to follow ‘and’ with ‘in’

or ‘one’ or ‘with’, since in each case that likelihood is

equally zero. Since we care about the expressed pref-

erences for following one word with another, this ab-

sence of a preference is just as well represented by

putting the same number, 1/4, in each cell in that

row. This 1/4 comes from the fact that there are four

words under consideration and since the text is equal-

ly likely (because not at all likely) to follow ‘and’ with

one of them we can divide certainty (the probability

represented by 1) four equal ways. So, in our algo-

rithm we need to add the proviso that in the event

of a row being all zeroes we fill each cell with 1 divided

by the number of words of interest we are using, in

order to represent the absence of a preference. For our

node-hopper, this eliminates the trap by turning it

into a node from which the outgoing edges, giving

the probabilities for her next hop, are evenly divided

amongst all the nodes.

Table 4. A matrix representing the Limit Probabilities for

the WAN in Table 3

and in one with

and 0.24 0.32 0.20 0.24

in 0.24 0.32 0.20 0.24

one 0.24 0.32 0.20 0.24

with 0.24 0.32 0.20 0.24

P. Brown et al.

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022328

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

Figure 2 shows a second kind of trap we have to

consider. In the text from which this WAN was con-

structed, ‘and’ is only ever followed by ‘and’ or ‘in’ and

‘in’ is only ever followed by ‘in’ or ‘and’, while ‘one’ is

only ever followed by ‘one’ or ‘with’ and ‘with’ is only

ever followed by ‘with’ or ‘one’. It would be a strange

text that resulted in this WAN, but here is one that

would produce it:

and and and in and and and in and and and in

and in

and and and in and and and in and and and in

and in

the the the the the the the the the the the the

the the the the the the the the the the the the

one one one with one one one with one one one

with

one one one with one one one with one one one

with

the the the the the the the the the the the the

We might be tempted to rule out such possibilities

using our knowledge of the language, as this text is

simply nonsense made of meaningless repetitions.

But Shakespeare was capable of writing dramatic lines

such as ‘Never, never, never, never, never’ (King Lear

5.3.284), ‘Words, words, words’ (Hamlet 2.2.195), and

‘O horror, horror, horror’ (Macbeth 2.3.62), so we real-

ly should rule nothing out as impossible regarding un-

usual repetitions. Let us see what happens when we

attempt to analyse such a strange text.

The normalized matrix for the WAN shown in

Fig. 2, derived from our nonsense text, is shown in

Table 5. Consider what the WAN in Fig. 2 means for

our node-hopper. It is not that she would get stuck for

eternity on any one node as with the simple trap of a

node with no outgoing edges, but that she would be

stuck for eternity in one or other of the two pairings:

either the ‘and’/‘in’ pairing or the ‘one’/‘with’ pairing.

Which of the two pairings she got stuck in would

depend on which node she started on and as the

two pairings are isolated that first-step choice would

entirely determine the Limit Probabilities that her

endless hopping would produce. We can see this in

practice if we multiply the matrix in Table 5 by itself

100 times, which produces the matrix in Table 6.

Comparing Table 6 with Table 4, we can see that in

Table 6 derived from the WAN shown in Table 5 and

Fig. 2, the Limit Probabilities have not converged. In

Fig. 4, the column giving the Limit Probability for

‘and’ has four occurrences of the same number 0.24,

but the numbers in the column for ‘and’ in Table 6 are

0.70, 0.70, 0.00, and 0.00. This represents the differ-

ence that whereas in Table 4 it does not matter which

node we start our hopping from—starting from ‘and’

or ‘in’ or ‘one’ or ‘with’ always gives us a Limit

Probability for ‘and’ of 0.24—in Table 6 (representing

the WAN in Fig. 2) starting from ‘and’ or ‘in’ gives us a

Limit Probability for ‘and’ of 0.70, while starting from

‘one’ or ‘with’ gives us a Limit Probability for ‘and’ of

zero, because if we start from ‘one’ or ‘with’ we never

land on ‘and’. That is, the non-converging numbers in

Table 5. Matrix representing the WAN shown in Fig. 2

#from to! and in one with

and 0.65 0.35 0.00 0.00

in 0.82 0.18 0.00 0.00

one 0.00 0.00 0.70 0.30

with 0.00 0.00 0.86 0.14

Table 6. A matrix representing the Limit Probabilities for

the WAN in Table 5

and in one with

and 0.70 0.30 0.00 0.00

in 0.70 0.30 0.00 0.00

one 0.00 0.00 0.74 0.26

with 0.00 0.00 0.74 0.26

Fig. 2 A state-transition diagram representing the Markov

chain shown in Table 5.

How the WAN algorithm works

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022 329

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

Table 6 correctly represent the fact that for this par-

ticular WAN, derived from this unusual nonsense

text, the result of the node-hopping process, that is

the Limit Probabilities, is strongly determined by

where we start the hopping from.

What can be done about this? The solution is to

conduct multiple node-hopping exercises, each start-

ing from a different node, and then combine the

results. But how many times should we run the

node-hopping exercise for each starting word? The

reasonable answer is that we repeat each node-

hopping exercise, each of which will give us a different

set of Limit Probabilities depending on our starting

word, the number of times that this starting word

appears in our text. In our nonsense text represented

by the WAN in Fig. 2, there are fifty-two occurrences

of ‘and’, ‘in’, ‘one’, and ‘with’, plus thirty-six occur-

rences of ‘the’ that in this exercise we are not counting.

Of those fifty-two words, twenty are ‘and’, eight are

‘in’, eighteen are ‘one’, and six are ‘with’. If we run the

node-hopping exercise fifty-two times, we should start

on ‘and’ twenty times, on ‘in’ eight times, on ‘one’

eighteen times, and on ‘with’ six times. To run more

node-hopping exercises we need only stick to these

proportions, starting on ‘and’ 20/52 of the time, on

‘in’ 8/52 of the time, on ‘one’ 18/52 of the time, and

on ‘with’ 6/52 of the time. Having thus started from

each word in proportion to its frequency in the text,

we can safely sum the Limit Probabilities across all the

node-hopping exercises since by selecting afresh

where to start each exercise we have applied the ne-

cessary weighting.

To implement this idea in our matrix, we simply

have to multiply the Limit Probabilities for each result

by the fraction representing the frequency in our text

of the word from which we have to start in order to get

that result. So, we multiply all the results for starting

with ‘and’ by 20/52, all the results for starting with ‘in’

by 8/52, all the results for starting with ‘one’ by 18/52,

and all the results for starting with ‘with’ by 6/52. Our

equivalent to summing all the results for the node-

hopping exercises is to add together all numbers in

each column, this being the sum of the weighted Limit

Probabilities found when we start with ‘and’, ‘in’,

‘one’, and ‘with’. This weighting and summing are

shown in Table 7. The four Column Totals in

Table 7—0.38, 0.16, 0.34, and 0.12—are the LPs for

the words ‘and’, ‘in’, ‘one’, and ‘with’, respectively.

This procedure handles the case of a peculiar non-

sense text giving rise to the peculiar WAN shown in

Fig. 2, and it works just as well for more peculiar cases,

where for example there might be not two closed loops

of two words as shown in Fig. 2 but many dozens of

closed loops of many words. But what about the more

usual real-world text from which the WAN in Table 3

was produced, for which the Limit Probabilities con-

verge as shown in Table 4? In this case, there is no need

to apply special weightings that represent what hap-

pens when we begin our node-hopping from different

starting points, since the results are the same no mat-

ter which node we start from. The technical name for

such a Markov chain that has no absorbing states and

no closed loops is ‘ergodic’. It turns out that if we

apply the same weighting procedure to such an erg-

odic case as this, which does not need it, the procedure

does no harm. This is shown in Table 8.

As we can see in Table 8, applying the weightings to

the Limit Probabilities makes no change to the Limit

Probabilities if they have already converged. This is

because 20/52 þ 8/52 þ 18/52 þ 6/52 equals 52/52 which

equals 1, as it must since we started with a pool of fifty-

two word occurrences and divided it four unequal

ways, one for each of the four word-occurrences’ fre-

quencies. No matter what these frequencies and their

resulting fractions are, if we multiply a single num-

ber—0.24 in the first column, 0.32 in the second, and

Table 7. Matrix showing the Limit Probabilities from Table 6 after weighting to reflect each word’s frequency in the text

and in one with

and 0.70 � 20/52 0.30 � 20/52 0.00 � 20/52 0.00 � 20/52

in 0.70 � 8/52 0.30 � 8/52 0.00 � 8/52 0.00 � 8/52

one 0.00 � 18/52 0.00 � 18/52 0.74 � 18/52 0.26 � 18/52

with 0.00 � 6/52 0.00 � 6/52 0.74 � 6/52 0.26 � 6/52

Column totals 0.38 0.16 0.34 0.12

P. Brown et al.

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022330

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

so on—by each of a set of fractions that sum to 1 and

then sum the products (as we do in the row ‘Column

totals’) the outcome is the same as multiplying that

single number by 1. Thus, our procedure leaves the

Limit Probabilities unchanged if they were already the

same no matter which word we started with. It is only

when the Limit Probabilities differ according to which

word we started with, as they do in Table 6, that this

process applies a weighting effect.

We have considered two peculiarities that could

emerge in our Markov chain that require special at-

tention in our algorithm. The first is a node having no

outgoing edges (represented by a row of zeroes in our

WAN table) because in our text the word it represents

is never followed by one of our words of interest. The

second is a closed set of nodes having edges only to

each other and no connections to the wider chain.

Both those cases are anticipated and corrected for in

the algorithm. A third potential problem is the

existence of a node on which our random walker

will spend virtually no time at all no matter where

she starts. Consider Fig. 3 showing a set of nodes

labelled abc to hij that are well-connected with one

another and a single isolated node labelled klm. If

our node hopper starts on klm, she will quickly leave

it never to return, as it has no incoming edges, and if

she starts anywhere else, she will never visit klm be-

cause it has no incoming edges. Over the long term,

our node hopper will spend negligible time on klm: its

Limit Probability will approach zero and it will play no

role in our calculation of relative entropy. This quite

reasonably reflects the fact that klm is a rare word for

which we do not have an established pattern of prox-

imity. For this reason, we are content to ignore such a

word and our algorithm does not correct for this

situation.

Figure 4 illustrates the last potential problem we

will consider, in which a pair of nodes present a trap

for our node hopper. As in Fig. 3, the nodes labelled

abc to hij are well-connected to one another, but now

this set’s edge with klm is reversed and klm forms a

Table 8. Matrix showing the Limit Probabilities from Table 4 after weighting to reflect each word’s frequency in the text

and in one with

and 0.24 � 20/52 0.32 � 20/52 0.20 � 20/52 0.24 � 20/52

in 0.24 � 8/52 0.32 � 8/52 0.20 � 8/52 0.24 � 8/52

one 0.24 � 18/52 0.32 � 18/52 0.20 � 18/52 0.24 � 18/52

with 0.24 � 6/52 0.32 � 6/52 0.20 � 6/52 0.24 � 6/52

Column totals 0.24 0.32 0.20 0.24

Fig. 3 A Markov chain in which node klm has a Limit

Probability of zero.

Fig. 4 A Markov chain in which all nodes except klm and

nop have a Limit Probability of zero.

How the WAN algorithm works

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022 331

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

pair with the node nop. This is essentially the opposite

of the situation depicted in Fig. 3 in that once our

node hopper visits klm or nop she is trapped, endlessly

hopping between just these two because there is no

edge taking her back to the set abc to hij. Our node

hopper must inevitably fall into this trap, as she either

starts on klm or nop or she starts on a node in the set

abc to hij and is eventually taken to klm by the edge

that leads to it. Notice that klm and nop have outgoing

edges to each other so they will not be detected by the

adjustment described above in which a row of zeroes

in the WAN table is replaced by a row of fractions,

each being one divided by the number of words of

interest.

If a text produces a Markov chain of the kind

depicted in Fig. 4, then the Limit Probabilities for

the nodes abc to hij will approach zero, as the longer

the node hopping continues the longer the hopper

spends trapped on the pair klm and nop. With all other

Limit Probabilities falling to zero, our algorithm will

in such a case base its attribution solely on the prox-

imities for the two words represented by the nodes klm

and nop. The situation in Fig. 4 can arise only if in our

text the following conditions apply: (1) there is a pair

of rare words, represented by nodes klm and nop, that

occur in proximity to each other (hence the existence

of edges connecting them to each other); (2) one of

them appears at least once after one of the common

words represented by nodes abc to hij (hence the edge

into klm); and (3) neither of them appears before one

of the common words (hence the absence of edges

leading back from klm or nop to the set from abc to

hij).

It is not impossible for a text to meet the conditions

that give rise to the Markov chain shown in Fig. 4, but

it is a vanishingly rare occurrence in all but the short-

est texts. This is one of the reasons why the WAN

method requires that the texts it attributes are longer

than a few hundred words. One can think of more

convoluted situations with several rare words trapping

the walker, but these too can be shown to be unlikely

occurrences so long as the text used for attribution is

sufficiently long. Our algorithm does not attempt to

detect and correct for these rare occurrences, since

their only effect is an acceptable and precisely quanti-

fiable diminution in the accuracy of the attributions

when the method is applied to small textual samples.

We are now in position to write the penultimate

step, Step 7, of our algorithm, to deal with the calcu-

lation of the Limit Probabilities:

7) Make a copy of the WAN, called LP (for

Limit Probabilities), and wherever it has a

row of all zeroes replace each cell’s value with

1 divided by the number of words of interest.

Multiply this matrix LP by itself 100 times.

Then for each row in the LP multiply the num-

ber in each cell by the number of occurrences in

the text of the word of interest represented by

that row and divide the result by the total num-

ber of all occurrences in the text of all the words

of interest. Add up the cells in each column to

produce the Limit Probability for the word rep-

resented by that column.

With our Limit Probabilities calculated, we can now

proceed to calculating the Kullback–Leibler diver-

gence, or relative entropy, between two WANs and

hence between two texts.

To compare the word-proximity habits of two

texts, we need a WAN for each, so we must perform

Steps 1 through 6 for each of the texts. Step 7 need be

performed only for the first of the two WANs, as only

its Limit Probabilities are needed for the calculation of

the relative entropy. The final step in our algorithm is

the calculation of the relative entropy between two

WANs, one for each of two texts, which we will call

WAN1 and WAN2:

8) Find the matrix cells for which, at the same

row and column positions in the two matrices,

the WAN1 cell and the WAN2 cell contain non-

zero values. For each such pair of cells, deduct

from the natural logarithm of the WAN1 cell’s

value the natural logarithm of the WAN2 cell’s

value and then multiply this difference by the

value in the WAN1 cell and by the Limit

Probability of the word represented by this

row in WAN1. Sum the result of this calcula-

tion for each such pair of cells in WAN1 and

WAN2 to give the relative entropy expressed in

the units called nats.

The only technical term in Step 8 we have not yet

defined is the logarithm. This is in a sense the inverse

of raising one number to the power of another

P. Brown et al.

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022332

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

number. We say that 3 to the power of 5 is 243 because

3� 3� 3� 3� 3¼ 243. That is, we raise x to the

power of y by multiplying x by itself repeatedly so

that there are y occurrences of x in the multiplication.

We can express this relationship the opposite way

around and say that the logarithm of 243 in the base

of 3 is 5 because we have to raise 3 to the power of 5 in

order to reach 243. We can use any base, so that the

logarithm of 10,000 in the base of 10 is 4 because 10 to

the power 4 is 10,000, or the logarithm of 256 in the

base of 2 is 8 because 2 to the power of 8 is 256.

Logarithms in the base of 10 are called common log-

arithms and logarithms in the base of 2 are called

binary logarithms. The natural logarithm referred to

in our Step 8 is one that uses as its base the mathem-

atical constant called e (approximately 2.72) and when

we use this base our relative entropy is expressed in

nats. We could just as well use any base, so for example

if we chose base 2, the binary logarithm, then our

resulting relative entropy would be expressed in the

units called bits.

Where in the above account we refer to a pair of

texts this may be on the one hand a single play of

unknown authorship and on the other an entire canon

of plays known to have been written by one dramatist.

A reasonable use of the algorithm is to measure the

relative entropy between a WAN made from a play of

unknown authorship and, in turn, each of the WANs

made from the dramatic canons of the plausible can-

didates for the play’s authorship. Validation investi-

gations in which the supposedly unknown play is in

fact one we know the authorship of—which play of

course was not one of the plays from which the

author’s WAN was constructed—tell us that this

method is able to ‘predict’ the correct author in

around 90–94% of cases for which we have sufficient

text to measure in the sample and in the canons of the

candidate authors.

The procedure leading to this claimed 90–94% suc-

cess rate is known as ‘leave-one-out cross validation’.

We take a set of securely attributed plays, each by a

different author, and we extract one play at random

and then build a WAN for each author in the remain-

ing set, based on all their plays. If we find that of all the

authorial WANs the one with the lowest relative en-

tropy to the WAN of the extracted play is the one for

the true author of the play, then this counts as a suc-

cessful attribution. The procedure is repeated many

times, with a different randomly chosen play extracted

each time, and the rate of successful attributions is

counted.

In our published applications of the WAN method,

the only additional complication we have not yet

described is a means for choosing the list of words

of interest whose proximities the algorithm records.

Rather than simply using all of the 100 most common

words in the language, it is possible to select the par-

ticular words whose proximities most effectively serve

to distinguish the various authors in a set of plays of

known authorship. In our experiments, we started

with a single list of words in the set of securely attrib-

uted plays, arranged in rank order from highest to

lowest frequency. Taking just the first few most-

common words as our words of interest, we ran the

validation process many times, always with the same

words of interest and extracting a different random

play each time. This produced an accuracy score asso-

ciated with the minimal set of words of interest.

Then we added to our words-of-interest list the

next most common word from the rank-order list of

those in the securely attributed plays and we reran the

validation process, always using the same, new list of

words of interest and extracting a different random

play each time. If we found that adding this new word

to our list of words of interest improved the accuracy

score, we retained it and if not, we discarded it. Then

we tried this all again with the addition of the next

most common word from the rank-order list of those

in the securely attributed plays, and so on until adding

new words of interest made no appreciable difference

to the accuracy score. The resulting list of words of

interest represents those that are demonstrably best

able to differentiate the authors in our set of securely

attributed plays.

Our published work on WANs has been the subject

of critiques in articles appearing in the journal ANQ: A

Quarterly Journal of Short Articles, Notes and Reviews

(Rizvi, 2018; Barber, 2020). These we have answered

in articles in the same journal, pointing out any mis-

understandings and misrepresentations of our work

(Segarra et al., 2020a,b). We hope that the above

detailed explanation of the WANs method helps

scholars who want to understand the method, and

those who want to critique it, and those who want

to use it in their own research, by providing the tech-

nical details in a relatively non-technical idiom.

How the WAN algorithm works

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022 333

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

We have made available an Open Source Python

script for the above algorithm by putting it on the

WorldWide Web at <http://gabrielegan.com/WAN>.

This Python script performs the functions expressed in

our algorithm’s Steps 1 through 8 as described above,

and has an option for stopping the five-word window

at the end of a dramatic speech, or at the end of any

other syntactic break that the user is able to identify and

encode in the digital source texts used. The input to the

Python script is three text files: two samples of writing

to be compared and a list of words of interest for mak-

ing the comparison—typically high-frequency function

words—and the output is a statement of the relative

entropy between the samples of writing.

All three files must be encoded in the American

Standard Code for Information Interchange (ASCII)

format, which for virtually all potential users is readily

available as the subset of American National Standards

Institute (ANSI) and Unicode Transformation Format

8 (UTF-8) standards. The script may well work for

encodings that use the non-ASCII encodings in the

ANSI and UTF-8 standards, but this has not been tested

by the authors. It is assumed that the samples of writing

comprise words separated by spaces and other conven-

tional pieces of punctuation without any special tagging

or mark-up. However, as the script merely compares

strings of letters as if these represent words, it will also

work correctly with files in which parts of speech have

been encoded by appending an abbreviation to each

word. Thus, the correct results will be obtained if in

the writing samples and the list of words of interest the

word ‘the’ is consistently recorded as the_det (to repre-

sent that it is a determiner), the word ‘and’ is consist-

ently recorded as and_conj (to represent that it is a

conjunction), and so on for other words.

The Python script does not implement the

function-word selection process we describe above

as this is a matter of how the algorithm is applied,

and in a large-scale investigation it would be

achieved by automated ‘calling’ of our software

script multiple times by a kind of ‘supervisor’ soft-

ware that performed the word-selection process. As

we have mentioned before, our function-word se-

lection process was not essential in our application

of the WAN method to the authorship claims we

investigated and ‘. . . we could just pick the top 100

most-used words in English and the results would

be about the same’ (Segarra et al., 2020b, p. 3). This

fact should remind us that language is ineluctably a

stochastic process, indifferent to the linguistic cat-

egories that we apply to particular kinds of words.

And this in turn should remind us that Claude

Shannon’s extraordinary contribution to the field

of Information Theory and hence computation

was also an extraordinary gift to the study of lan-

guage itself.

References
Antonia, A., Craig, H., and Elliott, J. (2014).

Language chunking, data sparseness, and the value of a long

marker list: Explorations with word N-grams and authorial

attribution. Literary and Linguistic Computing, 29: 147–63.

Argamon, S. E. (2018). Computational forensic author-

ship analysis: Promises and pitfalls. Language and

Law/Linguagem e Direito, 5(2): 7–37.

Barber, R. (2020). Function word adjacency networks and

early modern plays. ANQ: A Quarterly Journal of Short

Articles, Notes and Reviews, 33: 204–13.

Craig, H. and Greatley-Hirsch, B. (2017). Style, Computers,

and Early Modern Drama: Beyond Authorship.

Cambridge: Cambridge University Press.

Eisen, M., Ribeiro, A., Segarra, S., and Egan, G. (2018).

Stylometric analysis of early modern English plays.

Digital Scholarship in the Humanities, 33: 500–28.

Forsyth, R. S., Holmes, D. I., and Tse, E. K. (1999). Cicero,

Sigonio, and Burrows: Investigating the authenticity of the

Consolatio.Literary andLinguisticComputing, 14: 375–400.

Hoover, D. L. (2004). Delta prime? Literary and Linguistic

Computing, 19: 477–95.

Jockers, M., Nascimento, F.,and Taylor, G. H. (2019).

Judging style: The case of Bush Versus Gore. Digital

Scholarship in the Humanities, 35: 319–27.

Jockers, M. L., Witten, D. M., and Criddle, C. S. (2008).

Reassessing authorship of the Book of Mormon using

delta and nearest shrunken centroid classification.

Literary and Linguistic Computing, 23: 465–91.

Kullback, S. and Leibler, R. (1951). On information and

sufficiency. Annalsof Mathematical Statistics, 22(1):79–86.

Mosteller, F. and Wallace, D. L. (1963). Inference in an

authorship problem. Journal of the American Statistical

Association, 58: 275–309.

Rizvi, P. (2018). Authorship attribution for early modern

plays using function word adjacency networks: A critical

P. Brown et al.

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022334

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

http://gabrielegan.com/WAN

view. ANQ: A Quarterly Journal of Short Articles, Notes

and Reviews, 33: 328–31.

Segarra, S., Eisen, M., and Ribeiro, A. (2015). Authorship

attribution through function word adjacency networks.

Institute of Electrical and Electronics Engineers (IEEE)

Transactions on Signal Processing, 62(20): 5464–78.

Segarra, S., Eisen, M.,, Egan, G., and Ribeiro, A. (2016).

Attributing the authorship of the Henry VI plays by word

adjacency. Shakespeare Quarterly, 67: 232–56.

Segarra, S., Eisen, M., , Egan, G., and Ribeiro, A. (2020a). A

response to Pervez Rizvi’s critique of the word adjacency

method for authorship attribution. ANQ: A Quarterly

Journal of Short Articles, Notes and Reviews, 33: 332–37.

Segarra, S., Eisen, M., Egan, G., and Ribeiro, A. (2020b). A

response to Rosalind Barber’s critique of the word adja-

cency method for authorship attribution. ANQ: A

Quarterly Journal of Short Articles, Notes and Reviews

Advance Access, 1–6.

How the WAN algorithm works

Digital Scholarship in the Humanities, Vol. 37. No. 2, 2022 335

D
ow

nloaded from
 https://academ

ic.oup.com
/dsh/article/37/2/321/6384882 by guest on 27 M

ay 2022

