Minimal
Computing

—— = . e
' b e b
o[TT282222 |

_E_Fh“] — -
@ 0 |
288 || |4

() b - P y ks
o R
| EEEPEEED
TIEER [S 2SR

a working group of GO::DH

About
News & Announcements
Thought Pieces
Links & Resources
Mailing List
People

Minimal Computing is licensed
under a CG-BY 4.0 International
License.

Contribute

Home

Old Machines Running Old Languages

by Gabriel Egan - 03 Aug 2015

The Minimal Computing Lab at the Centre for Textual Studies (CTS) at De
Montfort University (Leicester, England) was created to help students of arts
and humanities subjects to understand how computers work, with a special
focus on how they can store and process writing. Almost all young people
quite literally use computers all day long, and yet almost all have virtually no
idea how these machines work at the most fundamental level and would
never consider programming one for themselves. To introduce students to
how computers work and how to program them, modern computers-even
stripped-down ones such as the Raspberry Pi-are much too complicated.
Before one can use a Windows or Macintosh computer or a Pi to teach a
modern, simplified programming language such as Scratch, one has to ‘boot’
the computer to load an operating system of bewildering complexity. If a
student asks “What is happening now?” as the machine boots, we have to
answer “It is complicated, so let us not discuss it now: wait until we get to the
simple Scratch environment”. This, | submit, is a highly unsatisfactory answer.
We have to just pretend not to notice all the complexity that is needed as a
prior step to reaching the simple programming environment, the simplicity of
which is entirely false since it depends on an underlying complexity that it
exists to conceal.

Why Old Computers?

We need a genuinely simple approach to programming, and for that we need
genuinely simple computers. The Minimal Computer Lab uses two kinds: the
Altair 8800 and the Amstrad PCW. These machines have no hard drives, no
built-in operating systems, and no Read-Only-Memory (ROM). When such a
machine is switched on it has empty memory and a processor doing nothing.
The first task is to get something into the machine’s memory (and thence the
processor) to start a ‘boot’ procedure. With the Altair 8800 that requires
toggling switches on the front panel to force into memory a dozen or two
bytes of code that enable the machine to ‘boot’ from its mass-storage
medium, in our case a paper-tape punch/reader. With the Amstrad PCW it
means inserting a floppy-disk: the bare machine has just enough built-in
code-a tiny bit of pseudo-ROM in the printer controller-to read and execute
the contents of the first sector on the first floppy disk.

In the Lab we make much use of paper tape because it renders readily
apparent the fact that digital text is (despite all preconceptions) stored on a
physical medium: there is nothing virtual about it. In other modern media the
zeroes and ones are very small (say microscopic pits on a metal surface)
and/or stored in a form such as magnetism that our eyes cannot detect. With
paper-tape, the zeroes and ones can be read directly off the tape by the
naked eye, and one of the first tasks that students are given is to manually
decode the binary ASCII of a strip of paper-tape containing a famous
quotation. Once the students understand the essential architecture of the
machine, they begin programming in the language BASIC. This choice of
language has been controversial in some quarters, and the Lab director is
often asked why we do not teach a ‘real’ programming language that the
students can use elsewhere, such as C or Python. Or the director is told “Teach

Minimal
Computing

LTI

3y

»
v
"

|-(.|'

A

=)

.!Ilﬂl -,
La asas |
: » .?'fi';—|
- A3
MY —:":
poes—— |

| 1S
s
"\i

,—3}’?‘53

a working group of GO::DH

About
News & Announcements
Thought Pieces
Links & Resources
Mailing List
People

Minimal Computing is licensed
under a CG-BY 4.0 International
License.

Contribute

them something they can use to program their smartphones” because that
will catch their interest.

Why BASIC?

Let us compare how the ubiquitous “Hello, World!” program looks in C,
Python, and BASIC. In C (depending on the installation), it might be:

#include <stdio.h>
mainQ

{
printf('Hello, World!'");

If you already know quite a bit about computers, this makes perfect sense. Of
course you need to include a least one standard library when your program is
compiled. (“Compiled?’, asks the student; “Yes, hold on, we will come to that
later”) And of course there has to be a ‘main’ section to every program. And
the curly and round braces? Well, you just need those, they are required by
the rules. At this point, knowledgeable readers may be thinking “but the
braces too can be explained quite logically”. Indeed they can. But can they be
explained in a way that makes sense to someone who is at the level of
learning about the “Hello, World!” program? | have not found a way to do this.

What about “Hello, World!” in Python (version 3, the latest)? This is much
better:

print(*'Hello, World!')

But we still have those braces. Why? (And, if you have been following the
development of Python, how come we did not need them in Python version
27) The answer is that in Python (version 3), print is not a statement-in
common parlance, an imperative to ‘do this'-but is instead a function. Being
a function, Python’s print is an intellectual construct that takes an
argument (the string “Hello, World!") as a specific instance of a generic object
that it has been programmed to work upon in a certain way. This presents a
significant pedagogical problem, since in order to explain how the simplest
program ever devised works, we must (if we use Python) first explain the tricky
concept of a programmable function.

In BASIC, of course, our “Hello, World!” program is just:

10 PRINT "Hello, World!"

The only bit of computer code is a simple imperative (“do this!”) and, as in
English, the words that are the object of a verb about a piece of language are
in quotation marks. If you already understand how to make sense of (to parse)
this line from a fictional narrative work

She said “Go! Leave me!”

P

then you already know enough to make sense of BASIC's “Hello, World!”
program.

But what about that number “107? Surely that is an unfortunate part of
BASIC’s underlying design philosophy that we do not want students to have
to understand, since as the referents of branch instructions a program’s line
numbers tell the reader nothing about the instructions to which control is

Minimal
Computing

= = T

a working group of GO::DH

About
News & Announcements
Thought Pieces
Links & Resources
Mailing List
People

Minimal Computing is licensed
under a CG-BY 4.0 International
License.

Contribute

being passed. Thus, instead of “GOSUB 1000” “ we would prefer students to
learn to label parts of their programs by what they do, as in “GOSUB Get_Age”.

In fact, as the referents of jumps, numbers are at least as familiar to novices
as alphabetic labels are. “Open your books at page 32 and begin reading”, “Let
us start again from the top of the second movement’, ‘Act Three, Scene Two,
everybody!”. By contrast, there are few precedents by which a novice might
understand that an alphabetic label can work as precisely as a numeric one.
Indeed, the implied codes in the following printed page are entirely familiar
to students:

2.2 The Tragedy of Hamlet

controversy. There was, for a while, no money bid for 3350
argument, unless the poet and the player went to cuffs in
the question.

HAMLET Is’t possible?

GUILDENSTERN O, there has been much throwing about of
brains.

Every line of a play that is being studied seriously has a line number-
although publishers usually print the number only for every 5th or 10th
line-and it is part of a generalized numbering system incorporating the larger
units of acts and scenes. Even quite weak students are comfortable with the
requirement to direct their attention to line 350 and to reference a quotation
of it using its wider context as “2.2.350”. We are already not a million miles
away from the use of dotted quads as Internet Protocol addresses.

If we want to build on what students already understand, line numbering in
programs is fine. And if they go on to advanced programming, line numbers
will return in many contexts, since serious text editors for programming and
XML coding provide them and computer error messages often quote them.
Moreover, a line number is a convenient analogy for the notion of ‘addresses’
as labels by which we refer to computer memory locations. Just as we say in
respect of our BASIC program that “line 10 contains the instruction to .., we
may say when introducing machine code programming that “memory location
0000 contains the instructionto ...

Beyond BASIC, and Still Minimal

The Altair 8800 and Amstrad PCW computers of the CTS’s Minimal Computing
Lab enable students with no computational experience whatsoever-
especially arts and humanities students who may think of themselves as
utterly non-technical-to learn about and try their hand at algorithmic
thinking. As a number of commentators have observed, those with any
practical experience of algorithmic thinking—-those who have tried breaking a
process into its fundamental, often repetitive, operations—are by this
experience (and especially by their instructive failures) set apart from those
with no experience of this approach to problem solving. In the CTS we focus
our teaching on language problems. We are a Centre for Textual Studies and
our students are already highly skilled in expressing ideas in words. But they
are, on the whole, uncomfortable with, if not wholly allergic to, expressing
ideas using numbers. We use BASIC to show how a machine can perform such
useful tasks as alphabetically sorting a list of words or counting the
frequencies of various features of a piece of writing such as the rates of
function word usage or punctuation, or the commonest lengths of words,

Minimal
Computing

a working group of GO::DH

About
News & Announcements
Thought Pieces
Links & Resources
Mailing List
People

Minimal Computing is licensed
under a CG-BY 4.0 International
License.

Contribute

sentences, or paragraphs. When used to quantify features of language, rather
than say sine functions or the Fibonacci series (examples common in many
programming primers), numbers are least terrifying to our students.

At some point, BASIC and the Altair 8800 or the Amstrad PCW are inevitably
not powerful enough for the students’ ambitions. With even a relatively short
piece of text such as Chapter One of Jane Austen’s novel Persuasion, a
word-frequency analysis running in BASIC might take days to complete. (We
can mitigate this by using our Teletype machine as the console and leaving it
on all week; the results will be captured on paper even if they appear at 3am
on a Tuesday, and cannot ‘scroll’ off the screen as with a VDU.) Moreover,
although we might just be able to squeeze the whole of Persuasion into the
computer’s memory at one time, we are not going to be able to also squeeze
in a few of Charles Dickens’s novels as well for comparison. The limitations of
these machines soon become apparent to students in their project-work.

For faster-running programs, the Altair 8800 and Amstrad PCW may be
programmed by more advanced students using machine code instructions or
assembly language. This dispels the last of the mysteries about how the
machine operates by revealing the fundamental level of logic gate operation,
busses, and clocks. Students who crave still more power may use the
university’s many labs filled with modern computers, which no longer seem to
them to be operating by magic but are revealed to be simply faster, more
capacious versions of the machines whose fundamental operations the
students now understand.

For the problem of comparing multiple literary texts, the limitations of the
Altair 8800 and Amstrad PCW are blessings in disguise. When one teaches
computational stylistics in a lab of modern computers, students can go a very
long way before they reach the limitations of the machines’ capacity to store
and process texts. Having counted the word frequencies across all of
Persuasion it is trivial to rewrite the program to do the same for all of Austen’s
novels, and then all Dickens’s too. In the students’ minds, the problem of scale
is, at least for a while, deferred by today’s machines’ prodigious memory and
mass storage capacities. But the problem of scale will nonetheless at some
point return. If one tries to initialize a memory array to hold all the words of
all the eighteenth- and nineteenth-century novels currently available in
digital form-totalling several billion words—-even the latest computers run
out of memory space. An algorithm that worked for a few novels will not work
for hundreds of novels considered at once.

With the Altair 8800 and the Amstrad PCW this limitation of scale is reached
much earlier in a project and the students have to learn the methods for
overcoming it. If they cannot fit even the whole of Persuasion into their data
structure at one time, they have to learn how we analyse texts in smaller
chunks, compiling the results for Chapter One before clearing the data
structure to work on Chapter Two, and so on, and collating all the results once
the final chapter has been processed, That is, the use of Minimal Computing
resources forces attention onto the inevitable problems of scale right from
the start, and teaches students not to assume that everything can be solved
by just adding more memory and mass storage. Instead, they learn to rethink
their algorithms so that when scaled up to work on more texts they take
longer to execute but do not employ substantially greater resources of
memory or mass storage. In other words, the principles of Minimal Computing
are an excellent introduction, for those who wish to pursue the topic, to the
principles of Supercomputing.

Minimal
Computing

PEIEIPTITINY

it

a working group of GO::DH

About
News & Announcements
Thought Pieces

Links & Resources
Mailing List
People

Minimal Computing is licensed
under a CC-BY 4.0 International
License.

Contribute

« No Connect

